首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2231篇
  免费   257篇
  国内免费   127篇
化学   340篇
晶体学   7篇
力学   609篇
综合类   38篇
数学   1011篇
物理学   610篇
  2024年   3篇
  2023年   26篇
  2022年   49篇
  2021年   61篇
  2020年   68篇
  2019年   63篇
  2018年   53篇
  2017年   80篇
  2016年   97篇
  2015年   67篇
  2014年   120篇
  2013年   177篇
  2012年   113篇
  2011年   134篇
  2010年   103篇
  2009年   139篇
  2008年   136篇
  2007年   161篇
  2006年   100篇
  2005年   97篇
  2004年   91篇
  2003年   69篇
  2002年   74篇
  2001年   73篇
  2000年   66篇
  1999年   57篇
  1998年   59篇
  1997年   28篇
  1996年   50篇
  1995年   40篇
  1994年   25篇
  1993年   22篇
  1992年   26篇
  1991年   10篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1982年   9篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1973年   5篇
  1970年   2篇
  1969年   2篇
排序方式: 共有2615条查询结果,搜索用时 421 毫秒
51.
In order to obtain a catalyst support with a high surface area, ZrO2 and ZrO2-Y2O3 were prepared by the hydrolytic decomposition of the corresponding isopropoxide dissolved in benzene. The hydrolysis was carried out at 80°C using an excess amount of distilled water in flowing dry nitrogen. The precipitates thus obtained were dried at 100°C followed by calcination at 500°C in air or nitrogen for 1 h. The specific surface areas for both of the ZrO2 and ZrO2-Y2O3 increased with increasing amount of water added for hydrolysis, and the surface areas for ZrO2-Y2O3 increased with increasing yttrium content. A ZrO2 having a surface area of 130 m2/g was produced, and a stabilized tetragonal ZrO2 with 15 mol% Y3+ having a surface area of 200 m2/g was produced. Furthermore, despite the difference in the ZrO2 and ZrO2-Y2O3 crystal structures, the lattice-strain of ZrO2 has been unequivocally related to the surface area.  相似文献   
52.
With the accelerated accumulation of genomic sequence data, there is a pressing need to develop computational methods and advanced bioinformatics infrastructure for reliable and large-scale protein annotation and biological knowledge discovery. The Protein Information Resource (PIR) provides an integrated public resource of protein informatics to support genomic and proteomic research. PIR produces the Protein Sequence Database of functionally annotated protein sequences. The annotation problems are addressed by a classification-driven and rule-based method with evidence attribution, coupled with an integrated knowledge base system being developed. The approach allows sensitive identification, consistent and rich annotation, and systematic detection of annotation errors, as well as distinction of experimentally verified and computationally predicted features. The knowledge base consists of two new databases, sequence analysis tools, and graphical interfaces. PIR-NREF, a non-redundant reference database, provides a timely and comprehensive collection of all protein sequences, totaling more than 1,000,000 entries. iProClass, an integrated database of protein family, function, and structure information, provides extensive value-added features for about 830,000 proteins with rich links to over 50 molecular databases. This paper describes our approach to protein functional annotation with case studies and examines common identification errors. It also illustrates that data integration in PIR supports exploration of protein relationships and may reveal protein functional associations beyond sequence homology.  相似文献   
53.
Three‐center nuclear attraction integrals over exponential‐type functions are required for ab initio molecular structure calculations and density functional theory (DFT). These integrals occur in many millions of terms, even for small molecules, and they require rapid and accurate numerical evaluation. The use of a basis set of B functions to represent atomic orbitals, combined with the Fourier transform method, led to the development of analytic expressions for these molecular integrals. Unfortunately, the numerical evaluation of the analytic expressions obtained turned out to be extremely difficult due to the presence of two‐dimensional integral representations, involving spherical Bessel integral functions. % The present work concerns the development of an extremely accurate and rapid algorithm for the numerical evaluation of these spherical Bessel integrals. This algorithm, which is based on the nonlinear D transformation and the W algorithm of Sidi, can be computed recursively, allowing the control of the degree of accuracy. Numerical analysis tests were performed to further improve the efficiency of our algorithm. The numerical results section demonstrates the efficiency of this new algorithm for the numerical evaluation of three‐center nuclear attraction integrals. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
54.
The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.  相似文献   
55.
Several numerical integration schemes for the evaluation of matrix elements in density functional theory calculations have been studied and compared by computational practice. The best scheme was found to be the combination of the atomic partition function proposed by Becke with the scaled generalized Gauss-Laguerre quadrature formula for radial integration suggested by Yang, which achieve the highest convergence rate to the numerical integration. With the same number of integration points, the accuracy of the calculated results by this scheme is higher by 1 to 2 orders of magnitudes than that by other schemes. The reason for achieving higher accuracy by this scheme has been proposed preliminarily.  相似文献   
56.
We review here the results of our investigations concerning chaotic atomic scattering in the presence of a laser field. Particular emphasis is put on the existence of classical stable resonance structures, induced by the intense laser field, which are embedded in the field-free continuum. We show that phase space structures in the vicinity of a resonance island play an important role in the chaotic scattering behavior and form the basis for a mechanism to enhance the lifetimes of the collisional partners. Quantum calculations, based on a wave packet propagation method, show that quantum solutions are strongly influenced by the classical phase space structures. More specifically, a wave packet is found to spread differently in the regular and chaotic regions; in the latter case it spreads exponentially with time until saturation occurs, defining the saturation time. We also investigate the dependence of the spreading rates in both the regular and chaotic regimes. Calculations with an ensemble of classical trajectories are also presented to further illustrate the smoothing effects of varying.  相似文献   
57.
Extending fixed‐grid time integration schemes for unsteady CFD applications to moving grids, while formally preserving their numerical stability and time accuracy properties, is a nontrivial task. A general computational framework for constructing stability‐preserving ALE extensions of Eulerian multistep time integration schemes can be found in the literature. A complementary framework for designing accuracy‐preserving ALE extensions of such schemes is also available. However, the application of neither of these two computational frameworks to a multistage method such as a Runge–Kutta (RK) scheme is straightforward. Yet, the RK methods are an important family of explicit and implicit schemes for the approximation of solutions of ordinary differential equations in general and a popular one in CFD applications. This paper presents a methodology for filling this gap. It also applies it to the design of ALE extensions of fixed‐grid explicit and implicit second‐order time‐accurate RK (RK2) methods. To this end, it presents the discrete geometric conservation law associated with ALE RK2 schemes and a method for enforcing it. It also proves, in the context of the nonlinear scalar conservation law, that satisfying this discrete geometric conservation law is a necessary and sufficient condition for a proposed ALE extension of an RK2 scheme to preserve on moving grids the nonlinear stability properties of its fixed‐grid counterpart. All theoretical findings reported in this paper are illustrated with the ALE solution of inviscid and viscous unsteady, nonlinear flow problems associated with vibrations of the AGARD Wing 445.6. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
58.
We are interested in developing a numerical framework well suited for advection–diffusion problems when the advection part is dominant. In that case, given Dirichlet type boundary condition, it is well known that a boundary layer develops. To resolve correctly this layer, standard methods consist in increasing the mesh resolution and possibly increasing the formal accuracy of the numerical method. In this paper, we follow another path: we do not seek to increase the formal accuracy of the scheme but, by a careful choice of finite element, to lower the mesh resolution in the layer. Indeed the finite element representation we choose is locally the sum of a standard one plus an enrichment. This paper proposes such a method and with several numerical examples, we show the potential of this approach. In particular, we show that the method is not very sensitive to the choice of the enrichment and develop an adaptive algorithm to automatically choose the enrichment functions.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
提出国家电网公司在实施设备的检修作业时尽量减少停电时间,以实现电缆线路状态的有效监控的重要意义.分析缩短单点作业时间的末端影响因素.提出三角模糊集、指数模糊集用于权重设置的具体途径,应用OWA算子于因素排序评价数值的加权,并拓展其基本原理和方法,使其对极端评分值有所抑制对中间评分值有所提升.以上海市电力公司检修公司为研究背景,应用直觉模糊集及其IFHA集成方法于缩短单点作业时间的末端影响因素评价指标排序,并得出u_≥u_≥u_1u_4u_6≥u_2u_3的结论.  相似文献   
60.
The approach for the integration over a region covered by zero‐flux surface is described. This approach based on the surface triangulation technique is efficiently realized in a newly developed program TWOE . The elaborated method is tested on several atomic properties including the source function. TWOE results are compared with those produced by using well‐known existing programs. Absolute errors in computed atomic properties are shown to range usually from 10?6 to 10?5 au. The demonstrative examples prove that present realization has perfect convergence of atomic properties with increasing size of angular grid and allows to obtain highly accurate data even in the most difficult cases. It is believed that the developed program can be bridgehead that allows to implement atomic partitioning of any desired molecular property with high accuracy. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号